-    SCRUTINYITE     -    PbO2

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  60  Pbcn 
Lattice parameters (Å):  4.9470  5.9510  5.4970 
Angles (°):  90  90  90 

Symmetry (theoretical): 

Space group:  60  Pbcn 
Lattice parameters (Å):  5.0177  5.8533  5.4158 
Angles (°):  90  90  90 

Cell contents: 

Number of atoms:  12 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Pb:  0.0000  0.1838  0.2500 
O:  0.2656  0.4094  0.4310 
Pb:  0.5000  0.3162  0.7500 
O:  0.2344  0.0906  0.9310 
O:  0.7344  0.4094  0.0690 
O:  0.7656  0.0906  0.5690 
Pb:  0.0000  0.8162  0.7500 
O:  0.7344  0.5906  0.5690 
Pb:  0.5000  0.6838  0.2500 
O:  0.7656  0.9094  0.0690 
O:  0.2656  0.5906  0.9310 
O:  0.2344  0.9094  0.4310 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
B1u
79
79
79
80
1.087e+53
2.8
1.555e+53
4.0
2.642e+53
6.8
5
A1g
80
80
80
89
2.509e+54
64.5
9.707e+53
25.0
3.480e+54
89.5
6
B3g
89
89
89
105
3.203e+51
0.1
4.401e+51
0.1
7.604e+51
0.2
7
B1g
105
105
105
105
1.647e+54
42.4
2.241e+54
57.6
3.888e+54
100.0
8
B1g
119
119
119
119
7.269e+53
18.7
9.331e+53
24.0
1.660e+54
42.7
9
B3u
123
123
123
123
6.001e+50
0.0
6.396e+50
0.0
1.240e+51
0.0
10
Au
130
130
130
130
1.191e+53
3.1
1.591e+53
4.1
2.782e+53
7.2
11
B3g
132
132
132
132
7.592e+52
2.0
1.044e+53
2.7
1.803e+53
4.6
12
B3u
147
164
147
147
1.791e+52
0.5
1.907e+52
0.5
3.698e+52
1.0
13
B2g
164
194
164
164
7.539e+51
0.2
1.037e+52
0.3
1.790e+52
0.5
14
B2u
197
197
208
197
5.721e+51
0.1
9.270e+51
0.2
1.499e+52
0.4
15
B1u
208
208
208
208
3.650e+51
0.1
4.960e+51
0.1
8.610e+51
0.2
16
A1g
208
208
222
216
1.631e+54
41.9
7.987e+53
20.5
2.429e+54
62.5
17
Au
222
222
229
222
1.867e+53
4.8
2.842e+53
7.3
4.709e+53
12.1
18
B3g
229
229
235
229
9.658e+50
0.0
1.329e+51
0.0
2.294e+51
0.1
19
B1g
236
236
236
236
1.119e+54
28.8
1.879e+54
48.3
2.997e+54
77.1
20
B2g
290
290
290
290
5.871e+50
0.0
8.073e+50
0.0
1.394e+51
0.0
21
B1u
333
333
333
352
1.438e+52
0.4
1.563e+52
0.4
3.001e+52
0.8
22
A1g
352
352
352
353
1.671e+54
43.0
8.692e+53
22.4
2.540e+54
65.3
23
B3g
399
399
399
399
2.213e+49
0.0
3.037e+49
0.0
5.250e+49
0.0
24
B2u
410
410
424
410
1.782e+53
4.6
2.618e+53
6.7
4.400e+53
11.3
25
B3u
424
429
429
424
5.541e+51
0.1
9.017e+51
0.2
1.456e+52
0.4
26
B2g
429
432
432
429
4.243e+51
0.1
5.835e+51
0.2
1.008e+52
0.3
27
B1u
432
435
435
435
7.204e+51
0.2
7.737e+51
0.2
1.494e+52
0.4
28
B1g
435
443
477
477
1.540e+53
4.0
1.526e+53
3.9
3.067e+53
7.9
29
Au
477
477
497
497
2.462e+50
0.0
3.262e+50
0.0
5.724e+50
0.0
30
B3u
497
525
518
525
1.500e+51
0.0
1.732e+51
0.0
3.231e+51
0.1
31
Au
525
553
525
531
1.186e+51
0.0
1.267e+51
0.0
2.453e+51
0.1
32
B2u
553
561
561
553
5.001e+49
0.0
8.436e+49
0.0
1.344e+50
0.0
33
A1g
561
565
564
561
2.482e+54
63.8
3.991e+53
10.3
2.881e+54
74.1
34
B3g
565
581
565
565
2.738e+51
0.1
3.764e+51
0.1
6.502e+51
0.2
35
B1g
600
600
600
600
3.262e+52
0.8
4.078e+52
1.0
7.340e+52
1.9
36
B2g
618
618
618
618
9.811e+49
0.0
1.349e+50
0.0
2.330e+50
0.0
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.