-    VATERITE     -    CaCO3

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  15  C2/c 
Lattice parameters (Å):  12.1700  7.1200  9.4700 
Angles (°):  90  118.37  90 

Symmetry (theoretical): 

Space group:  15  C2/c 
Lattice parameters (Å):  6.9700  6.9700  9.4178 
Angles (°):  68.61  111.38  119.49 

Cell contents: 

Number of atoms:  30 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Ca:  0.5000  0.0000  0.0000 
Ca:  0.3453  0.1925  0.4987 
C:  0.5885  0.2041  0.2646 
C:  0.9530  0.9530  0.2500 
O:  0.5460  0.3441  0.1401 
O:  0.6379  0.2355  0.4019 
O:  0.9103  0.8217  0.3817 
O:  0.5822  0.0242  0.2540 
O:  0.1345  0.1345  0.2500 
Ca:  0.0000  0.5000  0.5000 
Ca:  0.1925  0.3453  0.0013 
C:  0.2041  0.5885  0.2354 
O:  0.3441  0.5460  0.3599 
O:  0.2355  0.6379  0.0981 
O:  0.8217  0.9103  0.1183 
O:  0.0242  0.5822  0.2460 
Ca:  0.6547  0.8075  0.5013 
C:  0.4115  0.7959  0.7354 
C:  0.0470  0.0470  0.7500 
O:  0.4540  0.6559  0.8599 
O:  0.3621  0.7645  0.5981 
O:  0.0897  0.1783  0.6183 
O:  0.4178  0.9758  0.7460 
O:  0.8655  0.8655  0.7500 
Ca:  0.8075  0.6547  0.9987 
C:  0.7959  0.4115  0.7646 
O:  0.6559  0.4540  0.6401 
O:  0.7645  0.3621  0.9019 
O:  0.1783  0.0897  0.8817 
O:  0.9758  0.4178  0.7540 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
Au
-77
-77
-77
-77
2
Bu
-60
-60
-60
-59
3
ac
0
0
0
0
4
ac
0
0
0
0
5
ac
0
0
0
0
6
Bg
36
36
36
36
3.002e+38
0.6
4.128e+38
0.9
7.130e+38
1.5
7
Bu
63
71
63
68
8
Bu
77
77
77
77
9
Bg
77
81
77
81
1.607e+39
3.5
2.685e+39
5.8
4.292e+39
9.3
10
Ag
81
81
81
87
5.953e+39
12.9
4.734e+39
10.2
1.069e+40
23.1
11
Au
96
96
97
96
12
Bu
99
100
99
101
13
Ag
101
101
101
106
6.898e+39
14.9
4.976e+39
10.8
1.187e+40
25.7
14
Bg
106
106
106
106
7.367e+39
15.9
1.035e+40
22.4
1.772e+40
38.4
15
Au
120
120
120
120
16
Bg
120
120
126
120
3.959e+37
0.1
5.444e+37
0.1
9.403e+37
0.2
17
Ag
126
126
127
126
4.230e+38
0.9
2.731e+38
0.6
6.961e+38
1.5
18
Bu
134
143
134
148
19
Bg
151
151
151
151
1.496e+39
3.2
2.086e+39
4.5
3.582e+39
7.8
20
Bu
157
162
157
158
21
Au
162
164
162
162
22
Au
165
165
170
165
23
Bg
177
177
177
177
9.484e+36
0.0
1.041e+37
0.0
1.989e+37
0.0
24
Ag
178
178
178
178
1.858e+38
0.4
1.144e+38
0.2
3.003e+38
0.6
25
Bu
186
193
186
193
26
Ag
194
194
194
194
8.772e+38
1.9
5.113e+38
1.1
1.388e+39
3.0
27
Au
199
199
213
199
28
Bg
218
218
218
218
1.547e+39
3.3
2.025e+39
4.4
3.572e+39
7.7
29
Au
239
239
240
239
30
Ag
241
241
241
241
2.543e+39
5.5
1.985e+39
4.3
4.528e+39
9.8
31
Bu
245
245
245
247
32
Au
247
247
259
249
33
Bg
259
259
260
259
3.738e+38
0.8
5.622e+38
1.2
9.361e+38
2.0
34
Ag
260
260
272
260
1.229e+39
2.7
1.027e+39
2.2
2.257e+39
4.9
35
Bu
278
293
278
278
36
Bg
311
311
311
311
4.679e+39
10.1
5.060e+39
11.0
9.739e+39
21.1
37
Bg
315
315
315
315
5.805e+38
1.3
9.243e+38
2.0
1.505e+39
3.3
38
Bu
316
317
316
316
39
Ag
317
323
317
317
3.761e+39
8.1
3.342e+39
7.2
7.103e+39
15.4
40
Bu
323
335
323
323
41
Au
335
345
344
335
42
Bg
345
347
345
345
3.465e+38
0.7
5.550e+38
1.2
9.015e+38
2.0
43
Bg
347
349
347
347
7.225e+39
15.6
1.086e+40
23.5
1.808e+40
39.1
44
Ag
349
349
349
349
3.229e+39
7.0
4.308e+39
9.3
7.537e+39
16.3
45
Au
349
352
352
349
46
Ag
352
363
363
352
6.234e+39
13.5
8.303e+39
18.0
1.454e+40
31.5
47
Au
366
366
367
366
48
Bu
367
373
371
368
49
Au
376
376
382
376
50
Bu
382
395
395
382
51
Au
396
396
398
396
52
Bg
398
398
398
398
1.229e+39
2.7
1.457e+39
3.2
2.687e+39
5.8
53
Ag
398
398
405
398
1.588e+39
3.4
1.853e+39
4.0
3.441e+39
7.4
54
Bu
427
427
427
486
55
Ag
651
651
651
651
3.765e+38
0.8
1.659e+38
0.4
5.425e+38
1.2
56
Au
651
651
651
651
57
Bg
655
655
655
655
2.160e+38
0.5
3.284e+38
0.7
5.444e+38
1.2
58
Bu
658
658
658
658
59
Au
666
666
666
666
60
Ag
670
670
670
670
6.511e+38
1.4
8.962e+37
0.2
7.407e+38
1.6
61
Bu
753
753
753
753
62
Bg
753
753
753
754
5.943e+38
1.3
8.493e+38
1.8
1.444e+39
3.1
63
Bu
768
768
768
768
64
Au
768
768
768
769
65
Bg
769
769
769
769
4.520e+38
1.0
6.425e+38
1.4
1.094e+39
2.4
66
Ag
769
769
769
771
9.193e+38
2.0
1.244e+39
2.7
2.164e+39
4.7
67
Bu
848
848
848
848
68
Bg
848
849
848
848
1.337e+38
0.3
1.472e+38
0.3
2.808e+38
0.6
69
Ag
849
849
849
849
1.051e+38
0.2
8.539e+37
0.2
1.905e+38
0.4
70
Au
849
852
852
849
71
Bu
852
852
852
852
72
Bg
852
861
862
852
8.475e+37
0.2
9.839e+37
0.2
1.831e+38
0.4
73
Ag
1092
1092
1092
1092
2.006e+40
43.4
1.529e+38
0.3
2.021e+40
43.7
74
Au
1093
1093
1093
1093
75
Bu
1103
1104
1103
1103
76
Ag
1105
1105
1105
1105
4.608e+40
99.7
1.253e+38
0.3
4.620e+40
100.0
77
Bg
1106
1106
1106
1106
2.456e+38
0.5
3.446e+38
0.7
5.902e+38
1.3
78
Au
1106
1106
1107
1106
79
Bu
1424
1425
1424
1439
80
Ag
1439
1439
1439
1444
7.865e+38
1.7
6.424e+38
1.4
1.429e+39
3.1
81
Bg
1444
1444
1444
1450
1.655e+39
3.6
2.081e+39
4.5
3.736e+39
8.1
82
Bu
1452
1454
1452
1455
83
Au
1455
1455
1455
1458
84
Ag
1458
1458
1458
1463
2.088e+39
4.5
1.381e+39
3.0
3.470e+39
7.5
85
Au
1463
1463
1467
1486
86
Au
1488
1488
1493
1488
87
Bu
1493
1498
1498
1498
88
Ag
1498
1498
1498
1498
1.340e+39
2.9
1.287e+39
2.8
2.627e+39
5.7
89
Bg
1498
1554
1549
1581
7.805e+38
1.7
1.189e+39
2.6
1.970e+39
4.3
90
Bg
1582
1582
1582
1582
4.020e+37
0.1
6.237e+37
0.1
1.026e+38
0.2
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.