-    SASSOLITE     -    H3BO3

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  14  P2_1 
Lattice parameters (Å):  7.0187  7.0350  6.3472 
Angles (°):  92.49  101.46  119.76 

Symmetry (theoretical): 

Space group:  14  P2_1 
Lattice parameters (Å):  6.6953  6.7026  5.9485 
Angles (°):  91.68  101.48  119.89 

Cell contents: 

Number of atoms:  28 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

B:  0.6573  0.4299  0.2648 
B:  0.3158  0.7595  0.2350 
O:  0.4240  0.3027  0.2654 
O:  0.7818  0.3212  0.2552 
O:  0.7646  0.6635  0.2680 
O:  0.5511  0.8869  0.2417 
O:  0.2117  0.5271  0.2421 
O:  0.1866  0.8646  0.2270 
H:  0.3361  0.3924  0.2578 
H:  0.6886  0.1430  0.2493 
H:  0.9369  0.7466  0.2516 
H:  0.6401  0.7977  0.2548 
H:  0.0353  0.4410  0.2455 
H:  0.2812  0.0430  0.2403 
B:  0.3427  0.5701  0.7352 
B:  0.6842  0.2405  0.7650 
O:  0.5760  0.6973  0.7346 
O:  0.2182  0.6788  0.7448 
O:  0.2354  0.3365  0.7320 
O:  0.4489  0.1131  0.7583 
O:  0.7883  0.4729  0.7579 
O:  0.8134  0.1354  0.7730 
H:  0.6639  0.6076  0.7422 
H:  0.3114  0.8570  0.7507 
H:  0.0631  0.2534  0.7484 
H:  0.3599  0.2023  0.7452 
H:  0.9647  0.5590  0.7545 
H:  0.7188  0.9570  0.7597 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
Ac
0
0
0
0
2
Ac
0
0
0
0
3
Ac
0
0
0
0
4
Ag
44
44
44
44
1.922e+38
0.1
1.216e+38
0.0
3.138e+38
0.1
5
Ag
55
55
55
55
7.392e+38
0.2
3.639e+38
0.1
1.103e+39
0.3
6
Ag
94
94
94
94
2.847e+38
0.1
7.470e+37
0.0
3.594e+38
0.1
7
Au
111
111
111
111
8
Ag
113
113
113
113
6.513e+37
0.0
6.899e+37
0.0
1.341e+38
0.0
9
Ag
125
125
125
125
9.967e+38
0.3
5.386e+38
0.1
1.535e+39
0.4
10
Ag
134
134
134
134
3.215e+38
0.1
2.319e+38
0.1
5.534e+38
0.2
11
Au
136
136
136
136
12
Au
138
138
138
138
13
Ag
141
141
141
141
2.327e+39
0.6
2.060e+39
0.6
4.387e+39
1.2
14
Au
150
150
150
150
15
Au
159
159
159
159
16
Ag
163
163
163
163
3.081e+39
0.8
5.154e+39
1.4
8.235e+39
2.3
17
Ag
204
204
204
204
1.777e+39
0.5
2.109e+38
0.1
1.988e+39
0.5
18
Au
208
208
208
208
19
Ag
295
295
295
295
1.463e+39
0.4
1.108e+39
0.3
2.571e+39
0.7
20
Ag
299
299
299
299
1.467e+39
0.4
2.026e+39
0.6
3.493e+39
1.0
21
Au
301
301
301
301
22
Au
303
303
303
303
23
Ag
509
509
509
509
7.027e+36
0.0
8.439e+36
0.0
1.547e+37
0.0
24
Au
517
517
517
518
25
Au
551
551
551
551
26
Ag
552
552
552
552
4.394e+39
1.2
5.151e+39
1.4
9.545e+39
2.6
27
Ag
553
553
553
553
4.316e+39
1.2
3.972e+39
1.1
8.288e+39
2.3
28
Au
555
555
555
555
29
Au
601
602
602
602
30
Ag
602
602
603
606
7.865e+38
0.2
3.395e+38
0.1
1.126e+39
0.3
31
Au
607
609
607
608
32
Ag
609
610
609
609
4.132e+38
0.1
1.545e+38
0.0
5.677e+38
0.2
33
Ag
610
611
610
610
7.470e+38
0.2
4.131e+38
0.1
1.160e+39
0.3
34
Au
611
634
636
643
35
Au
645
645
646
646
36
Ag
648
648
648
648
5.152e+38
0.1
8.479e+38
0.2
1.363e+39
0.4
37
Au
890
890
890
891
38
Ag
893
893
893
893
2.978e+40
8.2
5.937e+38
0.2
3.038e+40
8.4
39
Ag
893
893
893
893
6.211e+40
17.1
1.310e+39
0.4
6.342e+40
17.5
40
Au
895
895
895
895
41
Au
908
908
908
910
42
Au
911
911
911
926
43
Ag
926
926
926
929
1.440e+38
0.0
1.940e+38
0.1
3.379e+38
0.1
44
Ag
929
929
929
948
1.307e+39
0.4
8.582e+37
0.0
1.393e+39
0.4
45
Ag
949
949
949
949
1.287e+38
0.0
1.716e+38
0.0
3.003e+38
0.1
46
Au
951
951
951
965
47
Au
966
966
966
988
48
Au
992
992
992
999
49
Au
1000
1000
1000
1002
50
Ag
1002
1002
1002
1019
1.046e+38
0.0
9.047e+37
0.0
1.951e+38
0.1
51
Ag
1019
1019
1019
1026
1.060e+38
0.0
1.209e+38
0.0
2.269e+38
0.1
52
Ag
1026
1026
1026
1033
5.756e+37
0.0
8.157e+37
0.0
1.391e+38
0.0
53
Au
1215
1215
1215
1215
54
Ag
1216
1216
1216
1216
1.669e+37
0.0
2.601e+37
0.0
4.270e+37
0.0
55
Au
1276
1276
1276
1276
56
Ag
1277
1277
1277
1277
2.317e+39
0.6
2.616e+39
0.7
4.933e+39
1.4
57
Au
1280
1280
1280
1280
58
Ag
1280
1280
1280
1280
2.332e+39
0.6
2.427e+39
0.7
4.759e+39
1.3
59
Au
1316
1317
1316
1316
60
Ag
1317
1318
1317
1317
7.820e+37
0.0
5.128e+37
0.0
1.295e+38
0.0
61
Ag
1318
1323
1318
1318
1.787e+38
0.0
9.379e+37
0.0
2.725e+38
0.1
62
Au
1323
1342
1349
1323
63
Au
1402
1402
1402
1402
64
Ag
1408
1408
1408
1408
3.528e+39
1.0
3.728e+39
1.0
7.257e+39
2.0
65
Au
1409
1409
1409
1409
66
Ag
1416
1416
1416
1416
3.594e+39
1.0
4.073e+39
1.1
7.667e+39
2.1
67
Ag
1489
1489
1489
1489
9.359e+37
0.0
7.910e+37
0.0
1.727e+38
0.0
68
Ag
1491
1491
1491
1491
4.330e+37
0.0
3.855e+37
0.0
8.185e+37
0.0
69
Au
1502
1507
1504
1502
70
Au
1511
1546
1550
1511
71
Au
1552
1565
1565
1552
72
Ag
1565
1586
1586
1565
4.781e+38
0.1
1.069e+38
0.0
5.849e+38
0.2
73
Au
2382
2383
2384
2382
74
Ag
2384
2384
2386
2384
3.282e+41
90.5
3.462e+40
9.5
3.628e+41
100.0
75
Ag
2489
2489
2489
2489
7.473e+39
2.1
1.175e+39
0.3
8.648e+39
2.4
76
Au
2502
2505
2510
2502
77
Ag
2510
2510
2516
2510
4.247e+39
1.2
7.856e+38
0.2
5.032e+39
1.4
78
Au
2518
2675
2672
2518
79
Au
2675
2683
2683
2675
80
Ag
2683
2685
2687
2683
3.969e+40
10.9
4.146e+40
11.4
8.115e+40
22.4
81
Au
2687
2702
2702
2687
82
Ag
2702
2887
2878
2702
4.057e+40
11.2
4.576e+40
12.6
8.633e+40
23.8
83
Ag
2894
2894
2894
2894
1.062e+39
0.3
1.245e+39
0.3
2.307e+39
0.6
84
Au
2950
2950
2951
2951
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.