-    Na2S2O7     -    Na2S2O7

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in ICSD database; code 413049 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  P-1 
Lattice parameters (Å):  6.7702  6.7975  6.7292 
Angles (°):  116.77  96.089  84.00 

Symmetry (theoretical): 

Space group:  P-1 
Lattice parameters (Å):  6.6372  6.6828  6.5873 
Angles (°):  117.40  96.27  83.80 

Cell contents: 

Number of atoms:  22 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Na:  0.1320  0.8190  0.7672 
Na:  0.6649  0.7553  0.3808 
S:  0.1579  0.7498  0.2637 
S:  0.3608  0.3063  0.1383 
O:  0.0069  0.7158  0.3856 
O:  0.6681  0.1468  0.5855 
O:  0.9214  0.1505  0.8832 
O:  0.7614  0.4960  0.9222 
O:  0.6417  0.8768  0.0905 
O:  0.2392  0.2860  0.2947 
O:  0.4415  0.6103  0.7655 
Na:  0.8680  0.1810  0.2328 
Na:  0.3351  0.2447  0.6192 
S:  0.8421  0.2502  0.7363 
S:  0.6392  0.6937  0.8617 
O:  0.9931  0.2842  0.6144 
O:  0.3319  0.8532  0.4145 
O:  0.0786  0.8495  0.1168 
O:  0.2386  0.5040  0.0778 
O:  0.3583  0.1232  0.9095 
S:  0.7608  0.7140  0.7053 
O:  0.5585  0.3897  0.2345 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
Ac
0
0
0
0
2
Ac
0
0
0
0
3
Ac
0
0
0
0
4
Ag
62
62
62
62
9.011e+38
0.7
6.855e+38
0.5
1.587e+39
1.2
5
Au
65
65
66
65
6
Ag
89
89
89
89
1.638e+39
1.3
8.026e+38
0.6
2.441e+39
1.9
7
Ag
94
94
94
94
3.761e+38
0.3
1.444e+38
0.1
5.204e+38
0.4
8
Au
99
99
101
99
9
Ag
101
101
104
101
8.353e+38
0.6
3.324e+38
0.3
1.168e+39
0.9
10
Ag
108
108
108
108
1.198e+39
0.9
1.022e+39
0.8
2.220e+39
1.7
11
Au
114
117
117
115
12
Ag
117
118
124
117
6.110e+38
0.5
4.607e+38
0.4
1.072e+39
0.8
13
Ag
125
125
125
125
9.454e+38
0.7
6.238e+38
0.5
1.569e+39
1.2
14
Ag
130
130
130
130
6.003e+38
0.5
4.847e+38
0.4
1.085e+39
0.8
15
Au
135
138
136
140
16
Au
149
154
149
154
17
Ag
161
161
161
161
3.377e+38
0.3
3.644e+38
0.3
7.021e+38
0.5
18
Au
164
164
165
164
19
Ag
169
169
169
169
9.224e+38
0.7
4.879e+38
0.4
1.410e+39
1.1
20
Au
171
176
172
171
21
Au
187
191
191
191
22
Ag
191
192
193
193
3.357e+39
2.6
5.502e+38
0.4
3.907e+39
3.0
23
Au
206
212
210
206
24
Ag
212
213
212
212
2.051e+39
1.6
7.104e+38
0.5
2.761e+39
2.1
25
Au
214
215
221
218
26
Au
222
223
225
225
27
Ag
225
225
231
231
3.420e+38
0.3
2.073e+38
0.2
5.493e+38
0.4
28
Ag
231
231
231
250
2.661e+38
0.2
2.587e+38
0.2
5.248e+38
0.4
29
Au
275
279
275
279
30
Ag
279
292
279
279
4.981e+38
0.4
6.730e+38
0.5
1.171e+39
0.9
31
Ag
322
322
322
322
1.174e+40
9.0
1.215e+40
9.3
2.389e+40
18.3
32
Au
329
329
329
329
33
Au
341
341
341
341
34
Ag
343
343
343
343
1.974e+40
15.1
7.788e+39
6.0
2.752e+40
21.1
35
Au
349
350
350
349
36
Ag
357
357
357
357
1.877e+40
14.4
1.312e+40
10.1
3.189e+40
24.5
37
Au
444
445
445
444
38
Ag
446
446
446
446
6.997e+38
0.5
1.115e+39
0.9
1.815e+39
1.4
39
Au
504
504
504
504
40
Ag
504
504
504
509
1.730e+40
13.3
8.106e+39
6.2
2.541e+40
19.5
41
Au
535
538
538
538
42
Ag
538
545
545
543
3.377e+39
2.6
2.405e+39
1.8
5.782e+39
4.4
43
Au
545
547
547
547
44
Ag
547
549
557
547
3.165e+39
2.4
3.447e+39
2.6
6.612e+39
5.1
45
Au
557
557
561
557
46
Ag
561
561
571
561
2.234e+39
1.7
2.191e+39
1.7
4.425e+39
3.4
47
Au
572
590
590
572
48
Ag
590
590
606
590
6.295e+39
4.8
7.567e+39
5.8
1.386e+40
10.6
49
Au
635
635
635
636
50
Ag
638
638
638
638
1.330e+39
1.0
1.199e+39
0.9
2.529e+39
1.9
51
Au
709
711
720
713
52
Ag
724
724
724
724
3.670e+40
28.2
9.944e+38
0.8
3.770e+40
28.9
53
Au
772
773
773
773
54
Ag
773
781
828
784
2.760e+40
21.2
5.042e+39
3.9
3.264e+40
25.0
55
Ag
1038
1038
1038
1038
2.196e+39
1.7
3.267e+38
0.3
2.523e+39
1.9
56
Au
1039
1042
1050
1040
57
Au
1090
1090
1090
1093
58
Ag
1096
1096
1096
1096
1.298e+41
99.6
5.104e+38
0.4
1.303e+41
100.0
59
Au
1241
1242
1242
1242
60
Ag
1242
1260
1246
1242
2.845e+39
2.2
2.916e+39
2.2
5.761e+39
4.4
61
Ag
1260
1261
1260
1260
5.158e+39
4.0
6.431e+39
4.9
1.159e+40
8.9
62
Au
1271
1279
1273
1272
63
Au
1280
1282
1288
1290
64
Au
1290
1293
1293
1293
65
Ag
1293
1297
1297
1297
7.830e+39
6.0
9.576e+39
7.3
1.741e+40
13.4
66
Ag
1297
1329
1301
1340
5.763e+39
4.4
5.446e+39
4.2
1.121e+40
8.6
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.