-    GLASERITE     -    K3Na(SO4)2

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

 

Parameters of the Calculation 


All the calculations have been done using the ABINIT software. This is a list of the most representative parameteres used during the Raman calculation.


Number of electronic bands: 32
k-points  
   grid: 6 6 4 
   number of shifts: 
   shifts: 0 0 0 
Kinetic energy cut-off: 40 Ha  [=1088.464 eV ]
eXchange-Correlation functional:  

Pseudopotentials: 
K:  potassium, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 0 local 
Na:  sodium, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 2 local 
S:  sulphur, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 2 local 
O:  oxygen, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 2 local 
 

Dielectric Properties 


We define:

  • The Born effective charges, also called dynamical charges, are tensors that correspond to the energy derivative with respect to atomic displacements and electric fields or, equivalently, to the change in atomic force due to an electric field: The sum of the Born effective charges of all nuclei in one cell must vanish, element by element, along each of the three directions of the space.
  • The dielectric tensors are the energy derivative with respect to two electric fields. They also relate the induced polarization to the external electric field.

Born effective charges (Z): 

K: 1.1971 0.0000 -0.0000 
0.0000 1.1971 0.0000 
-0.0000 0.0000 0.9768 
Eig. Value: 1.1971 1.1971 0.9768 
Na: 1.2146 0.0000 0.0000 
0.0000 1.2146 -0.0000 
-0.0000 0.0000 1.1501 
Eig. Value: 1.2146 1.2146 1.1501 
K: 1.0324 0.0000 0.0000 
-0.0000 1.0324 -0.0000 
0.0000 -0.0000 1.1672 
Eig. Value: 1.0324 1.0324 1.1672 
S: 3.0501 0.0000 0.0000 
-0.0000 3.0501 0.0000 
0.0000 -0.0000 3.1871 
Eig. Value: 3.0501 3.0501 3.1871 
O: -0.8647 0.0000 -0.0000 
0.0000 -0.8647 0.0000 
-0.0000 0.0000 -2.0597 
Eig. Value: -0.8647 -0.8647 -2.0597 
O: -1.7365 0.4537 -0.3671 
0.4537 -1.2126 0.2119 
-0.3489 0.2015 -1.1194 
Eig. Value: -2.1623 -0.9507 -0.9555 
O: -1.7365 -0.4537 0.3671 
-0.4537 -1.2126 0.2119 
0.3489 0.2015 -1.1194 
Eig. Value: -2.1623 -0.9507 -0.9555 
O: -0.9507 0.0000 0.0000 
0.0000 -1.9984 -0.4239 
-0.0000 -0.4029 -1.1194 
Eig. Value: -0.9507 -2.1623 -0.9555 
K: 1.0324 -0.0000 0.0000 
-0.0000 1.0324 -0.0000 
0.0000 -0.0000 1.1672 
Eig. Value: 1.0324 1.0324 1.1672 
S: 3.0501 -0.0000 0.0000 
-0.0000 3.0501 0.0000 
-0.0000 -0.0000 3.1871 
Eig. Value: 3.0501 3.0501 3.1871 
O: -0.8647 0.0000 -0.0000 
0.0000 -0.8647 0.0000 
-0.0000 0.0000 -2.0597 
Eig. Value: -0.8647 -0.8647 -2.0597 
O: -1.7365 0.4537 -0.3671 
0.4537 -1.2126 0.2119 
-0.3489 0.2015 -1.1194 
Eig. Value: -2.1623 -0.9507 -0.9555 
O: -1.7365 -0.4537 0.3671 
-0.4537 -1.2126 0.2119 
0.3489 0.2015 -1.1194 
Eig. Value: -2.1623 -0.9507 -0.9555 
O: -0.9507 -0.0000 0.0000 
0.0000 -1.9984 -0.4239 
-0.0000 -0.4029 -1.1194 
Eig. Value: -0.9507 -2.1623 -0.9555 
Atom type 

Dielectric tensors: 

 
Ɛ2.0710 0.0000 0.0000 
0.0000 2.0710 0.0000 
0.0000 0.0000 2.0983 
Eig. Value: 2.0710 2.0710 2.0983 
Refractive index (N): 1.4391 0.0000 0.0000 
0.0001 1.4391 0.0000 
0.0002 0.0000 1.4486 
Eig. Value: 1.4391 1.4391 1.4486 
Ɛ00.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
Eig. Value: 0.0000 0.0000 0.0000 
 

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
Eu
-46
-46
-46
-46
2
Eu
-46
-33
-33
-46
3
Eg
-33
-33
-33
-33
4
Eg
-33
-33
-33
-33
5
Ac
0
0
0
0
6
Ac
0
0
0
0
7
Ac
0
0
0
0
8
Eu
49
49
49
49
9
Eu
49
53
53
49
10
A2g
53
70
70
53
11
A2u
76
76
76
79
12
A1u
79
79
79
92
13
Eg
92
92
92
92
2.331e+38
0.2
3.307e+38
0.3
5.639e+38
0.5
14
Eg
92
92
92
93
2.331e+38
0.2
1.903e+38
0.2
4.234e+38
0.4
15
Eu
99
99
99
99
16
Eu
99
105
105
99
17
Eg
105
105
105
105
3.594e+38
0.3
5.865e+38
0.5
9.458e+38
0.8
18
Eg
105
120
120
105
3.594e+38
0.3
4.018e+38
0.3
7.612e+38
0.7
19
A1g
120
134
134
120
7.654e+38
0.7
1.448e+38
0.1
9.101e+38
0.8
20
A2u
135
135
135
137
21
A1g
137
137
137
154
6.173e+38
0.5
9.088e+36
0.0
6.264e+38
0.5
22
Eu
173
173
173
173
23
Eu
173
190
190
173
24
A2u
190
219
219
237
25
Eu
420
420
420
420
26
Eu
420
420
420
420
27
Eg
424
424
424
424
4.855e+39
4.2
6.047e+39
5.2
1.090e+40
9.5
28
Eg
424
424
424
424
4.855e+39
4.2
4.923e+39
4.3
9.777e+39
8.5
29
A2u
585
585
585
588
30
Eu
588
588
588
588
31
Eu
588
591
591
591
32
Eg
591
591
591
591
3.206e+39
2.8
5.094e+39
4.4
8.299e+39
7.2
33
Eg
591
596
596
597
3.206e+39
2.8
3.236e+39
2.8
6.441e+39
5.6
34
A1g
600
600
600
600
3.158e+39
2.7
2.318e+39
2.0
5.475e+39
4.8
35
A2u
954
954
954
957
36
A1g
958
958
958
958
1.152e+41
99.9
8.458e+37
0.1
1.153e+41
100.0
37
Eg
1048
1048
1048
1048
4.928e+39
4.3
5.588e+39
4.8
1.052e+40
9.1
38
Eg
1048
1048
1048
1048
4.928e+39
4.3
7.424e+39
6.4
1.235e+40
10.7
39
Eu
1062
1062
1062
1062
40
Eu
1062
1139
1139
1062
41
A2u
1156
1156
1156
1185
42
A1g
1185
1185
1185
1225
9.695e+39
8.4
5.255e+39
4.6
1.495e+40
13.0
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.
 

Single Crystal Raman spectra

Single crystal Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

The Raman measurements performed on single crystals employ polarized lasers and allow for the selection of specific elements of the individual Raman tensors of the Raman-active modes.

By convention, in the following we assume a measurement as X(XZ)Z, i.e. incident laser polarized along the X axis, emergent light polarized along the Z axis. If the crystal is aligned with the xyz reference frame, we sample the αxz element. As you rotate the crystal you can sample other entries of the Raman tensor or various linear combineations.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 


Choose the orientation of the crystal with respect to the reference system:

 
Rotation around X axis:
Rotation around Z axis:
Rotation around Y axis: