-    CALCITE     -    CaCO3

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  167  R-3c 
Lattice parameters (Å):  5.0492  5.0492  17.3430 
Angles (°):  90  90  120 

Symmetry (theoretical): 

Space group:  167  R-3c 
Lattice parameters (Å):  6.2519  6.2519  6.2519 
Angles (°):  47.15  47.15  47.15 

Cell contents: 

Number of atoms:  10 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Ca:  0.0000  0.0000  0.0000 
C:  0.2500  0.2500  0.2500 
O:  0.5054  0.9946  0.2500 
O:  0.9946  0.2500  0.5054 
Ca:  0.5000  0.5000  0.5000 
C:  0.7500  0.7500  0.7500 
O:  0.7500  0.4946  0.0054 
O:  0.2500  0.5054  0.9946 
O:  0.4946  0.0054  0.7500 
O:  0.0054  0.7500  0.4946 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
0
0
0
0
2
0
0
0
0
3
0
0
0
0
4
81
81
81
100
5
100
100
100
100
6
100
123
123
136
7
163
163
163
163
8
164
164
164
164
4.980e+39
7.7
8.262e+39
12.7
1.324e+40
20.4
9
165
165
165
165
4.949e+39
7.6
5.990e+39
9.2
1.094e+40
16.9
10
256
256
256
256
11
256
271
271
256
12
306
306
306
306
13
309
309
309
309
1.217e+40
18.8
1.780e+40
27.4
2.997e+40
46.2
14
309
309
309
309
1.217e+40
18.8
1.243e+40
19.2
2.460e+40
37.9
15
342
342
342
342
16
350
350
350
350
17
350
368
368
350
18
368
418
418
441
19
709
709
709
709
2.177e+39
3.4
2.315e+39
3.6
4.492e+39
6.9
20
709
709
709
709
2.177e+39
3.4
2.065e+39
3.2
4.241e+39
6.5
21
713
713
713
713
22
713
715
715
713
23
848
848
848
853
24
853
853
853
865
25
1099
1099
1099
1099
6.292e+40
97.0
1.939e+39
3.0
6.486e+40
100.0
26
1099
1099
1099
1099
1.747e+39
2.7
5.383e+37
0.1
1.801e+39
2.8
27
1423
1423
1423
1423
28
1423
1451
1451
1423
29
1451
1451
1451
1451
2.266e+39
3.5
1.928e+39
3.0
4.194e+39
6.5
30
1451
1566
1566
1451
2.266e+39
3.5
2.594e+39
4.0
4.860e+39
7.5
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.