-    NALIPOITE     -    NaLi2PO4

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  62  Pmnb 
Lattice parameters (Å):  6.8840  9.9760  4.9270 
Angles (°):  90  90  90 

Symmetry (theoretical): 

Space group:  62  Pmnb 
Lattice parameters (Å):  6.7414  9.7163  4.7854 
Angles (°):  90  90  90 

Cell contents: 

Number of atoms:  32 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Na:  0.2500  0.8871  0.7595 
Li:  0.5004  0.6561  0.7907 
P:  0.2500  0.0968  0.2014 
O:  0.2500  0.1197  0.8825 
O:  0.0633  0.1620  0.3260 
O:  0.2500  0.9404  0.2560 
Na:  0.7500  0.6129  0.2595 
Li:  0.4996  0.8439  0.2907 
P:  0.7500  0.4032  0.7014 
O:  0.7500  0.3803  0.3825 
O:  0.9367  0.3380  0.8260 
O:  0.7500  0.5596  0.7560 
Na:  0.7500  0.1129  0.2405 
Li:  0.0004  0.3439  0.2093 
P:  0.7500  0.9032  0.7986 
O:  0.7500  0.8803  0.1175 
O:  0.5633  0.8380  0.6740 
O:  0.7500  0.0596  0.7440 
Na:  0.2500  0.3871  0.7405 
Li:  0.9996  0.1561  0.7093 
P:  0.2500  0.5968  0.2986 
O:  0.2500  0.6197  0.6175 
O:  0.4367  0.6620  0.1740 
O:  0.2500  0.4404  0.2440 
Li:  0.4996  0.3439  0.2093 
O:  0.9367  0.8380  0.6740 
Li:  0.5004  0.1561  0.7093 
O:  0.0633  0.6620  0.1740 
Li:  0.9996  0.6561  0.7907 
O:  0.4367  0.1620  0.3260 
Li:  0.0004  0.8439  0.2907 
O:  0.5633  0.3380  0.8260 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
Ac
0
0
0
0
2
Ac
0
0
0
0
3
Ac
0
0
0
0
4
B2u
76
76
81
76
5
Ag
81
81
82
81
2.240e+38
0.2
8.261e+37
0.1
3.067e+38
0.3
6
B2g
93
93
93
93
7
B3g
102
102
102
102
3.781e+37
0.0
5.199e+37
0.0
8.981e+37
0.1
8
B1u
117
117
117
124
9
Au
128
128
128
128
10
B1g
131
131
131
131
1.986e+37
0.0
2.730e+37
0.0
4.716e+37
0.0
11
Ag
141
141
141
141
8.084e+37
0.1
2.683e+37
0.0
1.077e+38
0.1
12
B3g
152
152
152
152
2.844e+38
0.3
3.910e+38
0.4
6.754e+38
0.6
13
B2u
155
155
168
155
14
Ag
170
170
170
170
1.021e+39
1.0
4.170e+38
0.4
1.438e+39
1.4
15
B1u
173
173
173
175
16
B2g
175
175
175
181
3.447e+36
0.0
4.740e+36
0.0
8.187e+36
0.0
17
Au
181
181
181
183
18
Ag
183
183
183
185
3.760e+38
0.4
2.796e+38
0.3
6.556e+38
0.6
19
B3g
185
185
185
192
7.269e+37
0.1
9.994e+37
0.1
1.726e+38
0.2
20
B1g
198
198
198
198
5.331e+36
0.0
7.329e+36
0.0
1.266e+37
0.0
21
Ag
200
200
200
200
2.056e+38
0.2
1.439e+38
0.1
3.495e+38
0.3
22
B3g
209
209
209
209
1.347e+38
0.1
1.852e+38
0.2
3.199e+38
0.3
23
B2u
214
214
224
214
24
B3u
224
224
224
224
25
B3g
224
224
224
224
2.122e+38
0.2
2.918e+38
0.3
5.040e+38
0.5
26
B1u
224
225
227
225
27
B2u
235
235
242
235
28
Au
244
244
244
244
29
B1u
249
249
249
254
30
B1g
254
254
254
254
1.811e+38
0.2
2.491e+38
0.2
4.302e+38
0.4
31
B2g
254
254
254
259
9.182e+35
0.0
1.263e+36
0.0
2.181e+36
0.0
32
B3u
305
305
305
305
33
B3u
329
329
329
329
34
Au
329
330
329
329
35
B2g
330
334
330
330
2.321e+36
0.0
3.191e+36
0.0
5.512e+36
0.0
36
B1g
334
341
334
334
9.591e+36
0.0
1.319e+37
0.0
2.278e+37
0.0
37
B1g
381
381
381
381
8.143e+38
0.8
1.120e+39
1.1
1.934e+39
1.8
38
Au
385
385
385
385
39
B3u
388
388
388
388
40
B2g
394
394
394
394
8.924e+38
0.8
1.227e+39
1.2
2.119e+39
2.0
41
Ag
395
395
395
395
1.065e+39
1.0
2.920e+38
0.3
1.357e+39
1.3
42
B3g
397
397
397
397
7.633e+38
0.7
1.050e+39
1.0
1.813e+39
1.7
43
B1u
398
398
398
400
44
B2u
427
427
428
427
45
B1g
429
429
429
429
5.437e+38
0.5
7.476e+38
0.7
1.291e+39
1.2
46
Au
432
432
432
432
47
B3g
433
433
433
433
1.378e+39
1.3
1.894e+39
1.8
3.272e+39
3.1
48
Ag
443
443
443
443
7.482e+38
0.7
3.701e+38
0.4
1.118e+39
1.1
49
B3u
444
444
444
444
50
B2u
453
453
455
453
51
B2g
455
455
455
455
2.316e+38
0.2
3.185e+38
0.3
5.501e+38
0.5
52
B1u
455
455
456
456
53
Ag
456
456
463
462
1.304e+39
1.2
9.707e+38
0.9
2.275e+39
2.2
54
Au
463
463
465
463
55
B1g
465
465
465
465
1.509e+38
0.1
2.074e+38
0.2
3.583e+38
0.3
56
B1u
465
465
467
467
57
B2g
467
467
471
471
5.797e+38
0.5
7.970e+38
0.8
1.377e+39
1.3
58
B3u
471
480
479
480
59
B3g
480
482
480
482
8.370e+37
0.1
1.151e+38
0.1
1.988e+38
0.2
60
B2u
482
484
484
484
61
Ag
484
494
495
495
4.003e+38
0.4
2.946e+38
0.3
6.949e+38
0.7
62
B3u
495
497
497
496
63
B1u
497
504
504
504
64
Au
504
516
516
514
65
B1g
516
518
518
516
2.391e+38
0.2
3.288e+38
0.3
5.679e+38
0.5
66
B3g
518
519
520
518
1.627e+38
0.2
2.238e+38
0.2
3.865e+38
0.4
67
B2g
520
520
523
520
3.027e+38
0.3
4.163e+38
0.4
7.190e+38
0.7
68
B2u
525
525
526
525
69
B2u
568
568
575
568
70
B1u
575
575
577
578
71
B2u
578
578
581
580
72
Ag
581
581
582
581
1.992e+39
1.9
1.493e+39
1.4
3.485e+39
3.3
73
B1u
582
582
594
594
74
B3u
594
596
596
596
75
B3g
596
596
596
596
2.491e+38
0.2
3.425e+38
0.3
5.916e+38
0.6
76
Ag
596
600
600
600
2.124e+39
2.0
1.323e+39
1.3
3.447e+39
3.3
77
Au
600
612
611
612
78
B1g
612
626
612
619
1.046e+39
1.0
1.438e+39
1.4
2.483e+39
2.4
79
B2g
626
641
626
626
5.130e+38
0.5
7.053e+38
0.7
1.218e+39
1.2
80
B3g
643
643
643
643
2.289e+36
0.0
3.148e+36
0.0
5.437e+36
0.0
81
Ag
927
927
927
927
1.051e+41
99.6
4.091e+38
0.4
1.055e+41
100.0
82
B2u
931
931
932
931
83
B1u
932
932
932
933
84
B3g
935
935
935
935
2.179e+36
0.0
2.996e+36
0.0
5.175e+36
0.0
85
Ag
996
996
996
996
5.784e+39
5.5
4.337e+39
4.1
1.012e+40
9.6
86
B1u
1004
1004
1004
1010
87
B2u
1010
1010
1014
1014
88
B3g
1014
1014
1019
1019
1.747e+37
0.0
2.402e+37
0.0
4.149e+37
0.0
89
Ag
1019
1019
1024
1041
6.719e+39
6.4
1.588e+39
1.5
8.308e+39
7.9
90
B3u
1041
1041
1041
1041
91
B3g
1041
1047
1041
1047
9.877e+38
0.9
1.358e+39
1.3
2.346e+39
2.2
92
B2u
1047
1049
1049
1049
93
B2g
1049
1083
1083
1083
1.873e+39
1.8
2.576e+39
2.4
4.449e+39
4.2
94
Au
1083
1095
1095
1095
95
B1g
1095
1119
1119
1100
2.247e+39
2.1
3.090e+39
2.9
5.338e+39
5.1
96
B1u
1119
1139
1126
1123
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.