-    PLAGIOCLASE     -    (Na,Ca)(Si,Al)4O8

BYTOWNITE - Theoretical structure, term in the plagioclase series treated as ideal solid solution using alchemical pseudopotentials. The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

 

Parameters of the Calculation 


All the calculations have been done using the ABINIT software. This is a list of the most representative parameteres used during the Raman calculation.


Number of electronic bands: 26
k-points  
   grid: 4 4 4 
   number of shifts: 
   shifts: 0.5 0.5 0.5 
Kinetic energy cut-off: 38 Ha  [=1034.0408 eV ]
eXchange-Correlation functional: LDA pw90 

Pseudopotentials: 
Na:  sodium, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 2 local  
Ca:  silicon, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 2 local 
Al:  oxygen, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 2 local 
 

Dielectric Properties 


We define:

  • The Born effective charges, also called dynamical charges, are tensors that correspond to the energy derivative with respect to atomic displacements and electric fields or, equivalently, to the change in atomic force due to an electric field: The sum of the Born effective charges of all nuclei in one cell must vanish, element by element, along each of the three directions of the space.
  • The dielectric tensors are the energy derivative with respect to two electric fields. They also relate the induced polarization to the external electric field.

Born effective charges (Z): 

Na: 1.9915 0.0360 0.0055 
0.0183 2.0290 0.0382 
-0.0155 0.0427 2.0047 
Eig. Value: 2.0009 2.0643 1.9600 
Si: 2.8536 0.2979 0.0033 
0.0773 2.6305 0.0639 
-0.0848 0.0593 2.9949 
Eig. Value: 2.9598 2.5125 3.0067 
Si: 2.8711 -0.2899 -0.0318 
-0.0889 2.7371 -0.0266 
-0.0150 -0.1343 3.0670 
Eig. Value: 2.9964 2.5900 3.0888 
Si: 2.8395 -0.1893 0.1076 
-0.0712 3.0593 0.0433 
0.1269 0.0463 2.7339 
Eig. Value: 2.8835 3.1201 2.6292 
Si: 2.7853 0.1066 0.0045 
0.0222 3.1248 -0.0507 
0.0758 0.0573 2.7592 
Eig. Value: 2.8058 3.1369 2.7266 
O: -1.4418 -0.0761 0.4932 
-0.0787 -1.3712 0.1459 
0.5397 0.1462 -2.3810 
Eig. Value: -1.2124 -1.3506 -2.6310 
O: -1.4326 0.0361 -0.1645 
0.0523 -2.4523 0.0914 
-0.1727 0.0767 -1.2512 
Eig. Value: -1.5263 -2.4613 -1.1485 
O: -2.3679 -0.2784 0.2510 
-0.2862 -1.3021 -0.0720 
0.3131 -0.0601 -1.3918 
Eig. Value: -2.4988 -1.1434 -1.4196 
O: -2.3892 0.3330 0.3254 
0.3142 -1.3156 0.0102 
0.3632 -0.0121 -1.4277 
Eig. Value: -2.5757 -1.1758 -1.3810 
O: -1.4475 -0.4551 -0.1536 
-0.3895 -2.1739 -0.2892 
-0.1316 -0.2845 -1.2859 
Eig. Value: -1.2553 -2.4554 -1.1966 
O: -1.5150 0.3892 -0.2288 
0.3261 -2.1773 0.1203 
-0.2434 0.1127 -1.3100 
Eig. Value: -1.4868 -2.3728 -1.1427 
O: -1.3797 0.1539 -0.2399 
0.2336 -1.4227 0.2036 
-0.3119 0.2001 -2.2070 
Eig. Value: -1.1994 -1.4520 -2.3582 
O: -1.3672 -0.0639 -0.3719 
-0.1295 -1.3656 -0.2782 
-0.4438 -0.2504 -2.3051 
Eig. Value: -1.2146 -1.2974 -2.5259 
Na: 1.9915 0.0360 0.0055 
0.0183 2.0290 0.0382 
-0.0155 0.0427 2.0047 
Eig. Value: 2.0009 2.0643 1.9600 
Si: 2.8536 0.2979 0.0033 
0.0773 2.6305 0.0639 
-0.0848 0.0593 2.9949 
Eig. Value: 2.9598 2.5125 3.0067 
Si: 2.8711 -0.2899 -0.0318 
-0.0889 2.7371 -0.0266 
-0.0150 -0.1343 3.0670 
Eig. Value: 2.9964 2.5900 3.0888 
Si: 2.8395 -0.1893 0.1076 
-0.0712 3.0593 0.0433 
0.1269 0.0463 2.7339 
Eig. Value: 2.8835 3.1201 2.6292 
Si: 2.7853 0.1066 0.0045 
0.0222 3.1248 -0.0507 
0.0758 0.0573 2.7592 
Eig. Value: 2.8058 3.1369 2.7266 
O: -1.4418 -0.0761 0.4932 
-0.0787 -1.3712 0.1459 
0.5397 0.1462 -2.3810 
Eig. Value: -1.2124 -1.3506 -2.6310 
O: -1.4326 0.0361 -0.1645 
0.0523 -2.4523 0.0914 
-0.1727 0.0767 -1.2512 
Eig. Value: -1.5263 -2.4613 -1.1485 
O: -2.3679 -0.2784 0.2510 
-0.2862 -1.3021 -0.0720 
0.3131 -0.0601 -1.3918 
Eig. Value: -2.4988 -1.1434 -1.4196 
O: -2.3892 0.3330 0.3254 
0.3142 -1.3156 0.0102 
0.3632 -0.0121 -1.4277 
Eig. Value: -2.5757 -1.1758 -1.3810 
O: -1.4475 -0.4551 -0.1536 
-0.3895 -2.1739 -0.2892 
-0.1316 -0.2845 -1.2859 
Eig. Value: -1.2553 -2.4554 -1.1966 
O: -1.5150 0.3892 -0.2288 
0.3261 -2.1773 0.1203 
-0.2434 0.1127 -1.3100 
Eig. Value: -1.4868 -2.3728 -1.1427 
O: -1.3797 0.1539 -0.2399 
0.2336 -1.4227 0.2036 
-0.3119 0.2001 -2.2070 
Eig. Value: -1.1994 -1.4520 -2.3582 
O: -1.3672 -0.0639 -0.3719 
-0.1295 -1.3656 -0.2782 
-0.4438 -0.2504 -2.3051 
Eig. Value: -1.2146 -1.2974 -2.5259 
Atom type 

Dielectric tensors: 

 
Ɛ2.4788 0.0000 0.0000 
0.0000 2.5055 0.0000 
0.0000 0.0000 2.5001 
Eig. Value: 2.4785 2.5084 2.4974 
Refractive index (N): 1.5744 -0.0000 -0.0000 
-0.0000 1.5829 -0.0000 
-0.0000 -0.0000 1.5812 
Eig. Value: 1.5743 1.5838 1.5803 
Ɛ00.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
Eig. Value: 0.0000 0.0000 0.0000 
 

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Ag
68
68
68
68
1.121e+39
3.3
6.887e+38
2.0
1.809e+39
5.3
5
Au
79
83
84
84
6
Ag
84
84
87
85
1.662e+39
4.9
6.606e+38
1.9
2.323e+39
6.8
7
Ag
99
99
99
99
6.624e+38
1.9
2.765e+38
0.8
9.389e+38
2.8
8
Au
121
125
130
128
9
Ag
130
130
130
130
6.957e+38
2.0
1.043e+39
3.1
1.739e+39
5.1
10
Ag
146
146
146
146
2.176e+38
0.6
3.105e+38
0.9
5.281e+38
1.6
11
Au
155
156
163
156
12
Au
165
166
168
167
13
Ag
168
168
168
168
2.561e+39
7.5
6.821e+38
2.0
3.243e+39
9.5
14
Ag
172
172
172
172
5.241e+38
1.5
3.896e+38
1.1
9.138e+38
2.7
15
Ag
188
188
188
188
2.640e+39
7.8
7.914e+38
2.3
3.432e+39
10.1
16
Ag
199
199
199
199
2.670e+39
7.9
2.846e+38
0.8
2.954e+39
8.7
17
Au
203
207
204
208
18
Ag
215
215
215
215
7.032e+38
2.1
4.871e+38
1.4
1.190e+39
3.5
19
Au
228
232
229
228
20
Ag
232
233
232
232
1.313e+38
0.4
1.376e+38
0.4
2.689e+38
0.8
21
Au
234
237
238
239
22
Au
249
251
249
249
23
Ag
257
257
257
257
7.011e+38
2.1
6.439e+37
0.2
7.655e+38
2.3
24
Au
261
261
261
261
25
Ag
277
277
277
277
9.377e+39
27.6
3.077e+38
0.9
9.685e+39
28.5
26
Au
290
291
290
290
27
Ag
300
300
300
300
2.099e+38
0.6
6.253e+37
0.2
2.725e+38
0.8
28
Au
304
304
305
304
29
Ag
311
311
311
311
1.035e+38
0.3
9.149e+37
0.3
1.950e+38
0.6
30
Au
328
330
332
329
31
Ag
332
332
334
332
4.226e+38
1.2
6.108e+37
0.2
4.837e+38
1.4
32
Au
343
343
355
343
33
Ag
360
360
360
360
3.575e+38
1.1
2.321e+38
0.7
5.896e+38
1.7
34
Au
364
365
364
370
35
Au
375
378
378
389
36
Au
389
390
389
390
37
Au
390
391
391
391
38
Ag
391
394
394
394
1.735e+38
0.5
2.379e+38
0.7
4.114e+38
1.2
39
Ag
394
403
409
409
1.335e+39
3.9
1.630e+38
0.5
1.498e+39
4.4
40
Ag
409
409
411
410
1.398e+39
4.1
8.356e+37
0.2
1.482e+39
4.4
41
Au
411
411
417
415
42
Ag
446
446
446
446
4.141e+38
1.2
1.654e+38
0.5
5.796e+38
1.7
43
Au
454
455
456
454
44
Au
461
462
461
461
45
Ag
470
470
470
470
4.441e+38
1.3
4.095e+37
0.1
4.850e+38
1.4
46
Ag
474
474
474
474
5.285e+39
15.6
1.501e+38
0.4
5.435e+39
16.0
47
Ag
501
501
501
501
3.392e+40
99.8
5.107e+37
0.2
3.397e+40
100.0
48
Au
529
531
543
529
49
Ag
565
565
565
565
1.932e+39
5.7
6.939e+36
0.0
1.939e+39
5.7
50
Au
566
575
567
572
51
Au
586
597
590
605
52
Ag
621
621
621
621
1.590e+38
0.5
1.769e+38
0.5
3.359e+38
1.0
53
Ag
629
629
629
629
1.190e+39
3.5
2.848e+37
0.1
1.218e+39
3.6
54
Au
629
652
632
633
55
Au
722
722
723
724
56
Ag
724
724
724
724
2.524e+39
7.4
1.709e+38
0.5
2.695e+39
7.9
57
Au
727
728
727
727
58
Ag
744
744
744
744
1.008e+39
3.0
7.029e+38
2.1
1.711e+39
5.0
59
Au
747
747
753
750
60
Au
777
786
777
777
61
Ag
789
789
789
789
1.694e+39
5.0
2.489e+38
0.7
1.943e+39
5.7
62
Ag
792
792
792
792
6.793e+38
2.0
3.743e+38
1.1
1.054e+39
3.1
63
Au
901
901
904
904
64
Ag
904
904
915
907
9.408e+38
2.8
1.190e+39
3.5
2.131e+39
6.3
65
Ag
915
915
916
915
3.646e+38
1.1
4.483e+38
1.3
8.129e+38
2.4
66
Au
919
927
949
949
67
Ag
949
949
962
964
3.002e+38
0.9
2.120e+38
0.6
5.122e+38
1.5
68
Au
964
969
969
969
69
Ag
969
978
979
971
1.795e+38
0.5
1.957e+38
0.6
3.752e+38
1.1
70
Au
979
991
991
997
71
Ag
1012
1012
1012
1012
2.821e+38
0.8
3.390e+38
1.0
6.211e+38
1.8
72
Au
1028
1028
1028
1028
73
Au
1037
1045
1038
1041
74
Ag
1045
1060
1045
1045
1.657e+38
0.5
8.376e+37
0.2
2.495e+38
0.7
75
Ag
1060
1076
1060
1060
4.047e+38
1.2
3.643e+38
1.1
7.690e+38
2.3
76
Au
1077
1080
1080
1080
77
Ag
1080
1084
1099
1082
3.735e+38
1.1
3.594e+38
1.1
7.329e+38
2.2
78
Au
1099
1137
1126
1145
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.
 

Single Crystal Raman spectra

Single crystal Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

The Raman measurements performed on single crystals employ polarized lasers and allow for the selection of specific elements of the individual Raman tensors of the Raman-active modes.

By convention, in the following we assume a measurement as X(XZ)Z, i.e. incident laser polarized along the X axis, emergent light polarized along the Z axis. If the crystal is aligned with the xyz reference frame, we sample the αxz element. As you rotate the crystal you can sample other entries of the Raman tensor or various linear combineations.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 


Choose the orientation of the crystal with respect to the reference system:

 
Rotation around X axis:
Rotation around Z axis:
Rotation around Y axis: